NEW-Carbon Home

@Protons4B <u>http://protonsforbreakfast.org</u> Brill, 18th February 2024

Climate Crisis: Carbon Dioxide Emissions

Here son, I saved all this money for your future © Eco-Resilience Ont Einat Danieli

More than 30% of total UK emissions!

How do we stop emitting CO_2 ?

It's to do with

how we use energy...

CO₂ emissions from a typical home

In 2022:

Each kWh of gas or electricity \Rightarrow ~0.23 kg CO₂ emissions.

Typically 2,900 kWh ⇒ 667 kg CO₂

0.7 tonnes CO₂

 $\begin{array}{c} \text{Typically} \\ 12,000 \text{ kWh} \\ \Rightarrow \\ 2,760 \text{ kg CO}_2 \end{array}$

2.7 tonnes CO₂

How to estimate CO₂ emissions from your home

Read your meters once a week

Carbon dioxide emissions from my house

Gas

Total Gas Use (kWh)

Gas Consumption

Days since the start of 2019

CO₂ emissions from Gas (kg)

Carbon Dioxide Emissions from Gas

Days since the start of 2019

Carbon dioxide emissions from my house

Electricity

Total Electricity Use (kWh)

Electricity Consumption (kWh)

Days since the start of 2019

CO₂ emissions from Electricity (kg)

Carbon Dioxide Emissions from Electricity

Days since the start of 2019

How much CO₂ do I emit?

- I estimate the carbon dioxide emissions from my home by reading my gas and electricity meters each week
- I have reduced carbon dioxide emissions from my home by around 80%.
- In future years this will improve slightly to about 90%.
- No loss of quality of life.

0.70 tonnes

How did I reduce my CO₂ Emissions?

How to reduce CO₂ Emissions

Reduce Heat Losses

- Triple-Glazing
- External Wall Insulation

Generate Renewable Electricity

- Solar Panels
- Battery

Stop Burning Gas

External Wall Insulation

External Wall Insulation

Applying Primer to the existing surface of the walls.

New roof insulates and encapsulates the old roof

Mechanical fixings

100 mm 'recess' at windows is not too visually offensive

CO₂ emissions from Gas (kg)

Carbon Dioxide Emissions from Gas

Days since the start of 2019

How to reduce CO₂ Emissions

Reduce Heat Losses

- Triple-Glazing
- External Wall Insulation

Generate Renewable Electricity

- Solar Panels
- Battery

Stop Burning Gas

Solar PV & Battery

<u>12 x Q-Cells panels = 4 kW</u> <u>peak</u>

- ~15 kWh/day in Summer
- ~2 kWh/day in Winter

Tesla Powerwall

- 13.5 kWh storage
- ~ 1 day's use
- ~ 30% of EV battery

Domestic Consumption and **Grid consumption**

CO₂ emissions from **Electricity** (kg)

Days since the start of 2019

How to reduce CO₂ Emissions

Reduce Heat Losses

- Triple-Glazing
- External Wall Insulation

Generate Renewable Electricity

- Solar Panels
- Battery

Stop Burning Gas

Air Source Heat Pump

Replaces Gas Boiler

5 kW heating

- Uses 1.5 kW electricity!
- More than 300% efficient!

Supplies hot water to:

- Radiators
- Hot Water Cylinder

Heat Pump Size:

- Rule of Thumb:
- ~Annual Gas kWh/2,900

Heat Pump: Weather Compensation

What did it all cost?

Capital Costs

Main Works

Date		Notes	Cost	
September 2019	Triple Glazing	9 windows & 1 door	£7,200	
August 2020	Triple Glazing	2 windows & 1 door	£3,080	£10,280
November 2020	External Wall Insulation		£25,790	£25,790
November 2020	Solar Panels		£4,231	£4,231
March 2021	Battery		£10,585	£10,585
January – July 2021	Heat Pump		£8,036	
	Heat Pump Wiring		£984	£9,020
				£59,996

Other Works

Date		Notes	Cost	
April 2021	EPC Rating		£90	£90
May 2021	Heat Pump Monitoring		£1,156	£1,156
May 2021	Air Conditioning		£5,832	£5,832
Jun-21	Bathroom Refurbishment		£5,700	
Jun-21	Bathroom Components		£2,125	£7,825
				£14,903

Running Costs (approximate)

Before (when energy was cheap!)

	Rate	Notes	Annual Cost	
Gas	@3.5 p/kWh	15,000	£525	
Electricity	@25p/kWh	3,800	£950	£1,475
Gas Standing Charge	@25 p/day	365 days	£91	
Electricity Standing Charge	@25 p/day	365 days	£91	£181
				£1,656

Now (when energy is expensive!)

	Rate	Notes	Annual Cost	
Electricity (peak rate)	Expensive @42p/kWh	~100	£42	
Electricity (cheap rate)	@7.5p/kWh	~3,000	£225	
Electricity (Exports)	@4.3p/kWh	~1100 kWh	£47	
Electricity Standing Charge	@40 p/day	365 days	£146	£366
				£366

Return on Investment (approximate)

Expenditure	Saving	Notes
£60,000	£2,000/pa	3.2%

Monthly cost for heating, cooking and electricity

Return on Investment (approximate)

What can you do?

- 1. Don't beat yourself up!
- 2. Take your time
- 3. Find out how much heating your dwelling uses in a year.
 - Try reading your meters once a week
- 4. Reduce heating demand.
 - Draughtproofing is cheap
 - Consider a heat loss survey
- 5. If you have the means:
 - Think about solar panels & a battery.
 - Buy a fraction of a wind turbine or solar park through Ripple <u>https://rippleenergy.com</u>.

Good Luck with your endeavours!

@Protons4B <u>http://protonsforbreakfast.org</u>